VACODUR 49

COMPOSITION (in wt%)

 $49 \, \text{Co} - 49 \, \text{Fe} - 2 \, \text{V} + \text{Nb}$ IEC 60404-8-6 F11 ASTM A 801-09 Alloy Type 1

PRODUCT DESCRIPTION

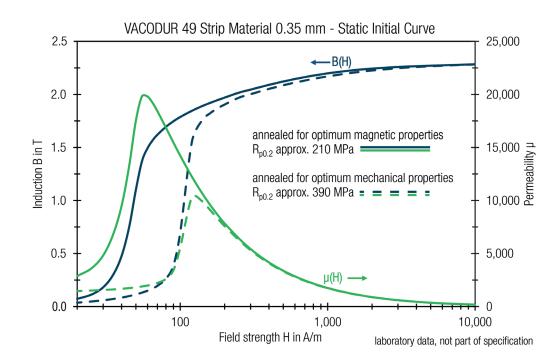
The family of VACODUR® alloys has been developed for more demanding requirements with respect to high strength combined with high saturation. The yield strength can be adjusted by varying the heat treatment temperature.

The yield strength of VACODUR 49 can be set over a wide range from 210 to 400 MPa. This makes the material especially suitable for applications in electric motors: stator and rotor laminations can be stamped from the same strip to achieve the most efficient use of material before undergoing different heat treatments in order to attain a magnetically optimized stator and a mechanically optimized rotor with defined yield strength.

For even higher yield strengths please refer to VACODUR S Plus.

MAIN PROPERTIES

- Saturation polarization of $J_s = 2.30 \text{ T}$
- Electrical resistivity of $\rho_{\rm e} = 0.42 \ \mu\Omega m$
- Yield strength R_{n0.2} up to 400 MPa


Laminations and an assembled stator produced from VACODUR 49 strip material

TYPICAL APPLICATIONS

Rotors and stators of high speed rotating electrical motors and generators.

FORMS OF SUPPLY

- Strip material, thickness 0.05 1 mm, width 120 320 mm
- Stamped parts, laminations and laminated assemblies Other dimensions, solid material and tolerances upon request

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit						
Mass density p	g/cm ³	8.12					
Thermal conductivity (25 °C) λ	W/(m·K)	32					
Thermal expansion coefficient (20 – 100 °C) α	10 ⁻⁶ /K	8.9					
Electrical resistivity $\rho_{\rm e}$	μΩm	0.42					
STATIC MAGNETIC PROPERTIES		magnetically optimized			mechanically optimized		
Coercivity H _C	A/m	50			110		
Saturation polarization $J_{\rm S}$	Т	2.30			2.30		
Saturation magnetization B_S at $H = 40 \text{ kA/m}$	Т	2.35			2.35		
Maximum Permeability μ_{max}		18,000			8,000		
Magnetostriction constant $\boldsymbol{\lambda}_{\text{S}}$	ppm	+70			+70		
Curie temperature $T_{\rm c}$	°C	950			950		
SPECIFIC IRON LOSSES OF STRIP MATERIAL		Strip thickness			Strip thickness		
AFTER FINAL HEAT TREATMENT		0.15 mm	0.20 mm	0.35 mm	0.15 mm	0.20 mm	0.35 mm
p _{Fe} 1.5 T 50 Hz	W/kg	1.3	1.5	1.6	2.5	2.6	3.0
р _{ге} 1.5 Т 400 Hz	W/kg	15	19	31	24	28	42
р _{ге} 1.5 Т 1,000 Hz	W/kg	55	74	150	76	96	174
р _{ге} 2.0 Т 50 Hz	W/kg	2.0	2.3	2.5	4.0	4.1	5.0
р _{Fe} 2.0 Т 400 Hz	W/kg	25	32	60	40	46	78
р _{Fe} 2.0 Т 1,000 Hz	W/kg	100	138	333	134	172	365
MECHANICAL PROPERTIES (final annealed)		magnetically optimized			mechanically optimized		
Young's modulus E	GPa	200			250		
Yield strength R _{p 0.2}	MPa	210			390		
Tensile strength R _m	MPa	400			720		
Elongation A	%	4			8		
Hardness	HV	185			220		
MECHANICAL PROPERTIES (cold rolled)							
Yield strength R _{p 0.2}	MPa	1,150					
Tensile strength R _m	MPa	1,230					
Elongation A	%	1					
Hardness	HV	360					
RECOMMENDED PARAMETERS FOR THE							
FINAL HEAT TREATMENT		magnetically optimized		mechanically optimized			
Atmosphere		hydrogen			hydrogen		
Temperature	°C	880			750		
Annealing time	h	6			3		
Cooling rate	K/h	100 – 300			100 – 300		

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, July 2022 © VACUUMSCHMELZE GmbH & Co. KG 2021. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

